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“I can lift the chair upright to position it in front of the coffee table.”

“I can cover the pot with the pot lid.”

.

“I can pick up the plastic bottle and place it inside the trash can.”

.

.

Fig. 1: We present a model for zero-shot task hallucination. With a single RGB
image of any scene comprising unknown environments and objects, we identify potential
tasks (task discovery) and imagine their execution (manipulation) in a vivid narrative,
realized as a video. We also provide the trajectories of the executed tasks.

Abstract. Humans can not only recognize and understand the world
in its current state but also envision future scenarios that extend be-
yond immediate perception. To resemble this profound human capacity,
we introduce zero-shot task hallucination—given a single RGB image of
any scene comprising unknown environments and objects, our model can
identify potential tasks and imagine their execution in a vivid narrative,
realized as a video. We develop a modular pipeline that progressively
enhances scene decomposition, comprehension, and reconstruction, in-
corporating VLM for dynamic interaction and 3D motion planning for
object trajectories. Our model can discover diverse tasks, with the gen-
erated task videos demonstrating realistic and compelling visual out-
comes that are understandable by both machines and humans. All code,
data, and additional videos are available at our project page:
https://dannymcy.github.io/zeroshot_task_hallucination/

“A rock pile ceases to be a rock pile the moment a single man
contemplates it, bearing within him the image of a cathedral.”

—Antoine de Saint-Exupéry

https://dannymcy.github.io/zeroshot_task_hallucination/
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1 Introduction

The theory of mental time travel [59] highlights the human ability to recall past
knowledge and anticipate future scenarios through visual perceptions. For ex-
ample, the sight of a fallen chair immediately prompts in our mind an imagined
rehearsal to straighten it back up. Equipping intelligent agents with this level of
imaginative foresight and the ability to visualize such imagination could open
up exciting possibilities, such as serving interactive tutors, offering step-by-step
visual guidance on tasks, or teaching robots to autonomously discover and un-
dertake tasks in new environments.

In this work, we aim to resemble this profound human capability to see,
imagine, and plan, by utilizing the recent advancements of large foundation
models [7, 47]. We introduce the problem of zero-shot task hallucination.
Given a single RGB image of any scene comprising unknown environments and
objects, our objective is to identify potential tasks (task discovery) and imag-
ine their execution (manipulation) in a vivid narrative, realized as a video, as
shown in Fig 1. The proposed tasks within the 3D scenes should be diverse yet
reasonable. Moreover, the generated task videos should be geometric-aware and
photo-realistic. The object motion should be feasible, fine-grained, and consistent
to ensure the task execution is interpretable by both humans and machines.

The challenge of zero-shot task hallucination is threefold. First, the model
must encompass strong capabilities of scene understanding. This includes not
only the ability to recognize arbitrary objects from diverse scene settings, but
also the understanding of interrelations between objects to propose reasonable
tasks. Second, the model must have a 3D understanding of the scene so that the
planned task execution follows the given spatial constraints. Finally, this hal-
lucinated task execution should be presented by a human-interpretable fashion
(e.g., a video). The closest existing approaches to addressing these challenges
lie in video generation and 3D-aware image editing fields. Yet, no current so-
lution seamlessly combines high-quality task execution visualization with geo-
metric awareness. State-of-the-art (SOTA) video generation models [32, 52] are
confined to 2D pixel space. They show satisfactory performance only in short
sequences and struggle with the precision needed for detailed, prolonged manip-
ulation tasks. Leading 3D-aware image editing models [18, 48] fail to maintain
smooth transitions and consistency across interpolated frames. Moreover, both
approaches lack the ability to understand 3D scenes and the capability to pro-
cess detailed, geometry-aware prompts (e.g., covering the pot with the pot lid),
which are needed for manipulation tasks.

Our solution addresses these challenges with a modular pipeline that pro-
gressively enhances scene decomposition, comprehension, and reconstruction,
incorporating Vision-Language Model (VLM) for dynamic interaction and 3D
motion planning for object trajectories, producing geometric-aware task videos.
To understand the image scene, we use VLM to identify interactive objects
and propose context-dependent tasks in a role-play manner, complemented by
language-guided segmentation and repainting models to obtain occlusion-free
object masks. Elevating 2D understanding to 3D, we use depth estimation and
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single-view 3D reconstruction models to generate a semi-reconstructed 3D scene,
with the full 3D representation of foreground objects and the background as a
plane. With the reconstructed 3D scene, we introduce a novel axes-constrained
3D planning approach that enables VLM to plan the motion of objects for given
tasks by specifying waypoints.

Through the combination of traditional path planning algorithms, our model
generates complete, feasible, and natural trajectories from merely a single image
observation. With the entire framework being fully modularized, each component
can be easily replaced with the latest improvements within its specific domain.

In summary, our main contributions are threefold:

• We study zero-shot task hallucination—the capability for models to discover
and propose possible tasks and plans of execution given a single image.

• We devise a plug-and-play framework that leverages large pretrained VLM
and 3D reconstruction model, combining with traditional path planning al-
gorithms to provide geometric-aware trajectories for diverse tasks.

• We show our model can convert these task plans into human-interpretable
formats such as videos for various potential applications, supported by ex-
tensive experiments.

2 Related Work

3D-Aware Image Editing The introduction of diffusion models [24, 56] has
created a plethora of high-performing aesthetic text-to-image generative mod-
els [3,24,50,53,54]. Various editing methods soon followed to bring more controls
over the images generated. [6,23,49] enables edits to real-world images with ad-
ditional words, while [19] allows fine-grained controls over the pixel space.

Several works also explored precise edits over the 3D space (e.g., object ro-
tation, translation, illumination, non-rigid shape changes) [12, 44, 48, 57]. Zero-
1-to-3 [40], ViewNETI [8], and Continuous 3D Words [12] enable rotations of
an object in the image, but are generally single-object centric. 3DIT uses large-
scale 3D datasets [18] to simulate and learn scene arrangements, while Diffusion
Handles [48] elevates the image editing space to 3D via depth estimation.

Inspired by these works, and in light of the complicated tasks that could be
discovered in our pipeline, and the recent advancements of many generalizable
single-image object reconstruction techniques [2,38,39], we propose to explicitly
reconstruct part of the scene to perform edits and rerender back to 2D.
Task Discovery Previous research on robotic agent targeted predefined tasks [27,
42] or environments [20,61]. Very recently, a few works [1,66] proposed the con-
cept of task discovery/proposal. RoboGen [66] presented the idea of generative
simulation, in which they leveraged foundation models to generate robotic learn-
ing data by configuring new scenes and proposing robotic tasks in physics en-
gines. AutoRT [1] observed and proposed tasks with a large fleet of robots. Nev-
ertheless, both of these works made the underlying assumption that the scenes
either created or observed are suitable for operation by certain robot types.
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Fig. 2: The proposed framework. Our plug-and-play framework is fully modular-
ized and zero-shot. Each module can be easily replaced with the latest improvements.
Exact prompts for VLM are presented in Appendix. E.

Our work diverges from these constraints and is applicable to all real scenes.
Moreover, our method requires only a single RGB image as observation/input.
Spatial Reasoning and Planning with VLMs With the internet-scale
training data and the birth of LLMs [7,47], VLMs are encompassed with reason-
ing and scene understanding capabilities [11,31,37]. Several works build from the
foundation and establish datasets to help with spatial reasoning/understanding [28,
36,44]. As a concurrent work, Spatial VLM [10] enhanced standard VLMs with
the ability to reason and answer questions requiring spatial understanding. In
this work, we take one step further—asking VLMs to not only reason about the
spatial information, but also plan the trajectory for tasks/actions in 3D space.

3 Method

Given a single RGB image I ∈ RH×W ×3 of a scene with K unknown objects,
our goal is to discover Q tasks suitable for execution by a robotic/human hand,
and generate Q task videos, each visually depicting the execution of these tasks.

Our fully modularized framework progressively enhances scene decomposi-
tion, comprehension, and reconstruction, incorporating VLM for dynamic in-
teraction and 3D motion planning for object trajectories, producing geometric-
aware task videos (Fig. 2). It begins by understanding 2D image scene (Sec. 3.1).
VLM identifies interactive objects and proposes context-dependent tasks through
role-play, complemented by a two-step segmentation to acquire occlusion-free ob-
ject masks with language-guided segmentation and repainting models. We then
reconstruct the 3D scene in a semi-reconstructed fashion leveraging single-view
3D reconstruction and depth estimation models (Sec. 3.2). Our method for cam-
era pose and object poses and sizes estimation does not require camera intrinsic
matrix and uses only normalized depth, thus can be generalized to any input
image. With the reconstructed 3D scene, we conduct in-context learning to let
VLM understand the 3D spatial context. Subsequently, we introduce a novel
axes-constrained 3D planning approach that enables VLM to plan the object
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motion based on the proposed tasks by specifying waypoints (Sec. 3.3). To gen-
erate complete, feasible, and natural trajectories, we use traditional robotics
path planning and optimization methods. Finally, we execute the tasks within
our reconstructed 3D scene following the planned paths, and render as videos.

3.1 Understanding Objects and Context of 2D Image Scene

3.1.1 Interactive Objects Identification
We start with querying VLM for intractable objects identification given I. We
explicitly ask VLM to identify and name useful objects in term of affordances.
Note that we exclude background objects (e.g., window, ceiling, stair), as they
tend to be fixed and typically offer limited interaction opportunities. We also
prompt VLM to provide concise descriptions, capturing the distinct color and
texture of each identified object. This step is vital for differentiating between
items of similar categories and appearances.

As a concrete example, given the left image of Fig. 2, VLM outputs:
“object 0: laptop of color black and gold with a smooth texture.

object 1: camera of color black with a textured grip. ...”

3.1.2 Occlusion-Free Object 2D Masks and Background Inpainting
Occlusion-Free Object 2D Masks The concise descriptions of identified ob-
jects are used as input text prompts for a language-guided segmentation model,
enabling the acquisition of K segmentation masks {Mocc

k }K
k=1, with each mask

corresponding to a unique object.
However, an object i ∈ [1, K] may be occluded by other object(s), leading

to an incomplete mask Mocc
i . To resolve this, we create an inpainting mask,

M inp
i , for each object, in which all objects except the one itself are removed and

replaced with white pixels. The inpainted masks are again fed to the language-
guided segmentation model along with input text prompts such that occlusion-
free object masks, {Mof

k }K
k=1, are obtained. This two-step segmentation process

for object i can be formulated as:

Mocc
i = seg(I, τi), Mof

i = seg(inpaint(M inp
i ), τi), (1)

where seg denotes the language-guided segmentation and τi denotes the descrip-
tion of object i. In practice, to cleanly remove objects without residual fragments
for inpainting, we apply dilation to and expand the white areas.
Background Inpainting We also remove and replace all objects with dilated
white pixels, and inpaint to acquire the inpainted background Ibg.

3.1.3 Task Proposal
We query VLM to propose meaningful, diverse tasks, each with a one-sentence
task description. Instead of directly querying VLM for task proposal, we employ
a hybrid approach that integrates role-play and object-based initialization. In
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(a) Side View (b) Active Camera View (c) Original Input Image 

camera

Fig. 3: Our method of partial 3D scene reconstruction. (a) full representation of
foreground objects and background as a plane, (b) the reconstructed scene from the
active camera view, (c) the original input image.

the role-play scenario, we prompt VLM to envision itself as a robotic/human
hand working in the scene to perform household tasks. For the object-based ini-
tialization, we guide VLM to sequentially focus on each identified object within
the scene. When the scene contains more than one identified objects, VLM is
instructed to suggest two tasks emphasizing interactions between the manip-
ulating object and any of the detected objects, and an additional task focused
solely on the manipulating object. If only one object is detected, VLM is directed
to propose a task involving just that object. This strategy guarantees a broad
spectrum of task suggestions, ensuring comprehensive object engagement.

To further tailor the task proposals, we impose specific constraints, directing
VLM to consider the practical affordances of objects while encouraging creative
assumptions (e.g., a bowl’s capacity to hold water) and potential interactions
(e.g., transferring water from a cup into a bowl). Additionally, we delineate clear
boundaries by excluding tasks that entail the assembly or disassembly of objects,
functionality tests, or the involvement of imaginary objects, thereby focusing on
feasible and meaningful tasks.

As a concrete example, given the image on the left of Fig. 2, with the ma-
nipulating object to be the red can, VLM will propose the following tasks:
“Task name: Can to Bowl Transfer

Description: Pick up the can and pour its contents into the bowl.

Task name: Can Relocation

Description: Pick up the can and place it inside the bowl.

Task name: Can Rotation

Description: Rotate the can 90 degrees on its vertical axis. ...”

3.2 Reconstructing and Understanding 3D Image Scene
Our method for partial reconstruction of the 3D scene focuses on full representa-
tion of foreground objects while simplifying the inpainted background as a plane.
The reconstructed scene is captured by a pinhole camera in the 3D environment,
as shown in Fig. 3(a). Given that our framework is designed to accommodate in-
put images captured by users using arbitrary cameras, we make the assumption
that the camera intrinsic matrix is unknown. Our partially reconstructed scene
demonstrates high visual alignment with the input image, see Fig. 3(b) and (c).
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3.2.1 Single-View 3D Object Reconstruction and Depth Estimation
The first step of reconstructing the 3D image scene involves reconstructing
3D object models and estimating depth. We feed occlusion-free object masks,
{Mof

k }K
k=1, to an off-the-shelf single-view 3D reconstruction model to acquire

object 3D models, {Ok}K
k=1. We also feed the original map I to an off-the-shelf

depth estimation model to acquire depth image, denoted as Idep.

3.2.2 Camera 6D Pose Estimation and Object Scale Initialization
Camera 6D Pose Estimation Single-view 3D reconstruction model recon-
structs mesh Oi of object i at the 3D origin, in the coordinate frame set by the
input mask Mof

i , and captures Oi by a pinhole camera. This camera, with 6D
pose Pc = [Rc | torigin

c ], captures Oi’s canonical pose within the image. Thus,
we can restore all objects’ canonical poses across all images by identifying Pc.

We use One-2-3-45++ [38], which provides the camera pose. For models
without this information, we develop an efficient method to determine the pose
by comparing object masks with rendered 3D model templates, inspired from
matching-based 6D pose estimation works [9,34,41,46]. Details in Appendix. B.

For pinhole camera to focus on the background plane center within the recon-
structed 3D scene, we backproject the 2D center of the inpainted background Ibg

using a camera intrinsic matrix CMat, and adjust the translation vector torigin
c

in the camera pose Pc. CMat is arbitrary, with the only condition of principal
point coordinates, cx and cy, set to image I center. Focal lengths fx and fy are
set to ϵ ∈ R\{0} because backprojecting the image center results in u = cx and
v = cy. Thus, our camera intrinsic matrix and adjusted, final camera pose are:

CMat =

ϵ 0 W/2
0 ϵ H/2
0 0 1

 , Pc = [Rc | tc], tc = torigin
c + backproject(Idep, center(I), CMat). (2)

Setting Background Plane The 6D pose of the background plane Obg (visu-
ally identical to Ibg), denoted as Pbg = [Rbg | tbg], matches the camera’s rotation
Rc as its orientation aligns with the camera. The position tbg is shifted along
the camera’s directional vector (vc = −Rc × [0, 0, 1]), ensuring fitting precisely
within the camera’s view based on the camera’s focal length and sensor width.
Object Scale Initialization 3D reconstruction models typically standardize
objects within a normalized sphere [13, 38, 39, 45, 71]. To set the initial scale
for Oi, we multiply the contour length of its occlusion-free 2D mask Mof

i by a
predefined scale factor δinit, tailored to model’s normalized space dimensions:

Sinit
i = arcLength(findContour(Mof

i )) × δinit. (3)

However, this method overlooks objects’ depth, inaccurately assuming uniform
distance from the camera (e.g., moving an apple from close to the camera to a
distant corner reduces its contour length). To correct this, we refine the object
scales after determining their 6D poses, detailed in the subsequent Sec. 3.2.3.
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3.2.3 Object 6D Pose Estimation and Object Scale Calibration
Object 6D Pose Estimation Our goal is to position object 3D models into
the reconstructed 3D scene without visual discrepancies and ensure accurate
depth. Because a significant portion of depth estimation model [4, 5, 51, 69] is
trained on depth datasets with depth data determined by sensors [21, 55] and
stereo matching [15,63,64,67,70], we assume that the predicted normalized depth
is the perpendicular distance to the camera plane, instead of a straight line from
the object to the camera lens [30]. We start by determining the 2D centers of each
occlusion-free object mask, {Mof

k }K
k=1, using center of mass. Then, we calculate

the corresponding object 3D centers on the background plane Obg, denoted as
{tbg

k }K
k=1. This process involves initially mapping the 2D centers onto Obg upon

its importation into the scene and then transforming these points by multiplying
the background plane’s pose Pbg. Similarly, denote the camera plane as Oc with
pose Pc = [Rc | tc] and each object 3D center on Oc as {tc

k}K
k=1. For an object

i ∈ [1, K], we perform raycasting from tc
i on the camera plane to tbg

i on the
background plane, and its distance di to move from tc

i towards tbg
i is written as:

di =
∣∣∣kinit × Idep(center(Mof

i )
∣∣∣ . (4)

Here, kinit represents the depth scaling factor that adjusts the normalized depth
values to the appropriate scale. Because the pinhole camera is used to capture the
3D scene, we then raycast from the camera lens tc to tbg

i with distance calculated
based on di such that the perpendicular distance moved from the camera plane
towards tbg

i remains unchanged. The 3D coordinate of object i is:

ti = tc + di∣∣∣tbg
i − tc

i

∣∣∣ × (tbg
i − tc). (5)

The rotation matrix Ri of the 6D pose of object i, Pi = [Ri | ti], is set to identity
matrix because the reconstructed 3D model Oi is aligned in its canonical pose.
Object Scale Calibration After integrating all 3D object models {Ok}K

k=1
into the 3D scene, each with a pose {Pk = [Rk | tk]}K

k=1 and an initial scale
{Sinit

k }K
k=1, we refine their scales to accurately reflect depth variations. Through

the lens of the pinhole camera with pose Pc, we render binary masks for each
object and evaluate the length of their contour lines relative to their occlusion-
free masks. The adjusted, final scale of object i can be expressed as:

Sadj
i = Sinit

i × arcLength(findContour(Mof
i ))

arcLength(findContour(Mrend
i ))

, (6)

where Mrend
i is the rendered mask of object i.

Finding Object Principle Axes We determine the principal axes (x-axis,
y-axis, and z-axis) of each object, which is essential for our novel 3D motion
planning method, explained in Sec. 3.3.1. Using the minimal oriented bounding
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box (OBB), we encapsulate each object in the smallest possible box, aligning the
object’s principal axes with the box’s dimensions. OBB employs principal com-
ponent analysis on the object’s point cloud to identify directions of maximum,
second greatest, and least variance, which naturally correspond to the object’s
orientation along its length, width, and height. This approach is straightforward
and effective, especially since our input images primarily consist of rigid objects.

3.2.4 Image and Spatial Context Understanding
With accurate camera pose, background plane pose, and object poses and scales,
we can reconstruct the 3D scene, denoted as V0, from the input image I. Before
using VLM for motion planning within the 3D scene based on proposed tasks,
we conduct in-context learning to familiarize VLM with the reconstructed 3D
environment. We feed V0 with visualized object axes (see Fig. 2B). Visualiz-
ing 3D spatial information is pivotal in improving VLMs’ understanding of 3D
spatial contexts derived from 2D images, validated by 3DAxiesPrompts [35]. To
augment VLM’s understanding, we also feed a paragraph describing the objects’
poses, sizes, and principal axes in physical units, alongside their spatial relation-
ships. This information is derived entirely from our reconstructed 3D scene. As
a concrete example for the left image on Fig. 2:
“Obj 0 spatial context:

- 3D center: [-21.0, 101.0, 4.0] cm

- Local x-axis (towards ‘right’): [0.8637, 0.293, -0.41]

- Local y-axis (towards ‘back_left’): [-0.5943, 0.7879, 0.1614]

- Local z-axis (towards ‘front’): [-0.1606, -0.7822, 0.6019]

Obj 0 size: 29.55 cm x 26.91 cm x 13.19 cm (WxDxH)

Obj 0 - Closest per direction: right: Obj 1 (29.16 cm); down: Obj 4 (15.72 cm) ...”

3.3 Planning and Task Execution within Reconstructed 3D Scene

3.3.1 Axes-Constrained Motion Planning through Waypoints
We introduce a novel method to guide VLM to conduct motion planning within
a 3D scene based on a proposed task by planning motion waypoints along the
manipulating object’s principal axes. More specifically, we define four types of
manipulations that VLM can use:
Rotation type 1: Axial rotation. The object rotates around its principle axes.
Rotation type 2: Rotation relative to the target object.
- pitch: Tilt similar to pouring water, around a horizontal axis formed by the
cross product of the connecting directional vector and the target’s vertical axis.
- yaw: Horizontal rotation, like a camera panning, around a vertical axis formed
by the cross product of the connecting directional vector and the pitch axis.
- roll: Rotation like drilling a surface, around the connecting directional vector.
Translation type 1: Defines the goal relative to the target object’s principle axes,
with translation values for its [x, y, z] axes in centimeters. [0, 0, 0] cm indicates
the goal is the center of the target object.
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Translation type 2: Sets the goal relative to a directional vector between two
reference objects, specifying how far (in cm) object 1 should move towards or
away from object 2 along this vector.

Since VLM inherently lacks the capability to provide 3D coordinates and
low-level actions directly [17, 65], our method offers a practical workaround by
translating natural language instructions into precise motion waypoints. This
approach significantly enhances VLM’s utility in spatial reasoning and manipu-
lation tasks without requiring direct 3D coordinate generation capabilities. Also,
the four types of manipulations we defined are both simple and comprehensive,
covering a broad spectrum of manipulation tasks.

As a concrete example, given the image on the left of Fig. 2, with “Task
name: Can to Bowl Transfer”, VLM will plan as follows:
“Task Name: Can to Bowl Transfer

Manipulating obj idx: 3

Interacting obj idx: 4

1. Move Manipulating Obj [3] to [6, 0, 7] cm relative to Target Obj [4]’s local [x, y, z] axes.

2. rotate_wref: Rotate Manipulating Obj [3] relative to Target Obj [4] around [pitch] axis by [75]

degrees.”

3.3.2 Trajectory Generation and Optimization

Trajectory Generation With the waypoints planned by VLM, we generate
the manipulating object’s trajectory using path planning algorithm, specifically
rapidly-exploring random tree star (RRT*) [29]. To generate accurate collision-
free path, we perform K-means clustering on the point clouds of object 3D model
with a high number of clusters, segmenting the object mesh into discrete voxels
and treating each voxel as an obstacle. Then, to accurately consider the manip-
ulating object’s dimensions, we grow the size of each voxel by its dimensions.

Handling VLM Planning Discrepancies The waypoints generated by VLM
are typically accurate and practical. Nonetheless, there are instances where the
waypoints suggested by VLM lead to collisions as determined by the RRT*
planner. This discrepancy is less about VLM’s misunderstanding of the objects’
sizes and their spatial relationship and more about the precision level of the
waypoints, which may not match the exacting standards of the RRT* planner’s
outcomes. To resolve this, we implement Gaussian sampling around the initially
planned waypoints whenever a collision is detected. The sampling strategy is
guided by a predefined set of geometric rules. Please see our Appendix. B for
details.

Trajectory Optimization Finally, to ensure our trajectory is natural and
smooth, we linearly interpolate rotation and interpolate translation using cubic
spline. The final trajectory for proposed task q ∈ [1, Q] is denoted as V q =
{V q

r }R
r=0. Each pose in the final trajectory V q is rendered as a frame in the

rendering engine, where V q
0 = V0, the rendering of the reconstructed 3D scene.
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Diverse scenes

Rich diversity of object categories and quantities per scene 
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Fig. 4: Dataset statistics. Our dataset presents 51 scenes—13 from NOCS and 38
captured from varied perspectives—featuring a wide range of object categories, quan-
tities, and a diverse set of tasks, task videos, and planned trajectories.

4 Experiments

Implementations We use ChatGPT-4 [47] as our VLM. The language-guided
segmentation model is Language Segment-Anything [43] and the repainting model
is LaMa [60]. We use One-2-3-45++ [38] for single-view 3D reconstruction and
Depth Anything [69] for depth estimation. For partial 3D scene reconstruction,
we use Blender [16] as the 3D software. The pinhole camera focal length and
sensor width are set to 80 mm and 36 mm, with δinit = 2.5e − 4, kinit = 1. All
inference is run on 1 NVIDIA A10 GPU with 24GB RAM.

Dataset As we are the first to propose zero-shot task hallucination, there
lacks a pre-existing dataset for evaluation. Therefore, we craft a diverse eval-
uation dataset by combining self-captured photos and scenes from the NOCS
dataset [62]. We capture 38 photos using an iPhone 12 Pro Max. From NOCS,
we use its real-world part of both the training and test sets, which encompasses
13 distinct scenes. Since each scene is a video sequence, we randomly extract
one frame as our data. We standardize all image dimensions by resizing all to
640 × 480.

Dataset Statistics Our dataset covers diverse scenes (e.g., office, kitchen,
bathroom), and features a rich diversity of object categories (116) and quantities
(185), with each image containing 1 − 7 objects and 1 − 3 tasks proposed for
each object (278 tasks/task videos/planned trajectories in total). The dataset’s
diversity is further enhanced by the variety of perspectives from which the images
are captured or selected (e.g., frontal, top-down, side views). This deliberate
choice of diverse angles, both in our own image capturing process and through
the random extraction of frames from NOCS, aims to simulate a realistic and
challenging array of scenes for evaluation. See Fig. 4 for statistics and visuals.
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Table 1: Comparison of task diversity. We sample 106 proposed tasks for fair
comparison with RoboGen and previous RL benchmarks.

Ours RoboGen [66] Behavior-100 [58] RLbench [26] MetaWorld [72] Maniskill2 [22]

Number of Tasks 106 106 100 106 50 20
Self-BLEU ↓ 0.269 0.284 0.299 0.317 0.322 0.674

Embedding Similarity ↓ 0.154 0.165 0.210 0.200 0.263 0.194

Table 2: User study. We ask 25 users to rate (scale 1 − 5) and rank (scale 1 − 3)
for 5 rotation and 5 translation tasks, and rate (scale 1 − 5) for 10 complex context-
dependent tasks. All results take average. Note that our user study size is similar to
those representative works such as ControlNet [73] and Prompt-to-Prompt [23].

Rotation Translation Context-Dependent

Rating ↑ Ranking ↓ Rating ↑ Ranking ↓ Rating ↑
3DIT [18] 1.93 2.34 1.90 2.27 -
Runway [52] 1.55 2.62 1.43 2.68 -
Ours 4.58 1.04 4.43 1.05 4.29

4.1 Task Diversity

We evaluate the diversity of the proposed tasks in terms of semantic meaning us-
ing Self-BLEU and the embedding similarity [74] following RoboGen [66], where
lower scores mean higher diversity. We also compare with previous reinforcement
learning (RL) benchmarks. From Table. 1, ours method generates most diverse
tasks as our pipeline is open to all scenes with no constraint.

4.2 Qualitative Demonstration

We present qualitative examples spanning various scenes and tasks, illustrating
our pipeline’s capability to produce diverse, visually appealing, and accurate
hallucinated task videos for a wide range of input images, as shown in Fig. 5.
Additional examples are available at our project page.

We also compare with our baselines, SOTA 3D-aware image editing and video
generation models, 3DIT [18] and Runway Gen-2 [52], as shown in Fig. 6. We
limit comparisons to rotation and translation tasks to avoid bias against 3DIT
and Runway in more nuanced context-dependent tasks (e.g., slicing an apple),
where their performances fall short. For 3DIT, we generate and connect frames
with our planned trajectories. For Runway, we prompt it with task descriptions.

4.3 Human Preference Evaluation: User Study

We rely on human preference evaluation as one of our quantitative metrics.
We let users rate and rank the rotation and translation task videos generated by
3DIT [18] and Runway Gen-2 [52] against our own in terms of both video quality
and task description alignment. For these complex context-dependent tasks, we
instead ask users to judge the videos’ authenticity and execution relative to

https://dannymcy.github.io/zeroshot_task_hallucination/
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Input Generated Task Videos

“Insert the toilet brush into the toilet bowl and scrub for cleaning.”

“The knife is used to slice the orange into halves or wedges on the cutting board.”

“The cup is repositioned under the coffee dispenser to prepare for coffee pouring.”

“Lift the milk container and deposit it into the trash bin.”

“Move the red eraser to the left of the blue eraser and erase letters.”

Fig. 5: Qualitative results. With diverse input scenes and proposed tasks, our
model produces high-quality task execution visualizations with geometric awareness
that aligns with the task descriptions. Zoom in for better view.

human action, and to encapsulate their perception of the action in our videos
with a single sentence. The usage of sentence description will be explained in
the subsequent Sec. 4.4. Table. 2 reveals the details and results.

4.4 Understanding Hallucination

Machine Understanding
Table 3: Results for
machine understand-
ing (classification) on
all 278 task videos.

Machine

Raw Acc ↑ 0.974
Fal-Pos Rate ↓ 0.363
True Acc ↑ 0.611

We assess the interpretability of our generated task
videos from a machine’s perspective using SOTA video
understanding model, Video-LLaVA-7B [33]. We use two
approaches: binary classification and descriptive genera-
tion. For classification, we feed the model with the task
descriptions generated by VLM and ask question (is the
video doing. . .?). In generation, we prompt Video-LLaVA-
7B to articulate its interpretation of the tasks depicted in
our videos. To quantify the correspondence between the
model’s perception and the tasks, we use OpenCLIP cosine similarity score [14].

However, we find that even SOTA video understanding model shows limited
performance. To assess false positive rate in classification, we deliberately mis-
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“Slide the microwave on the countertop for access or rear inspection.”

O
ur

s
R

un
w

ay
3D

IT

“Rotate the kettle to a position that would be suitable for pouring water.”

Fig. 6: Comparison with 3DIT [18] and Runway Gen-2 [52] on rotation and
translation tasks. 3DIT fails to maintain consistency and precision across interpolated
frames. Runway produces unpredictable artifacts. Our task videos are geometric-aware,
photo-realistic with fine-grained and consistent object motion. Zoom in for better view.

Table 5: Task proposal ablation study. We use all 278 proposed tasks.

Ours Ours w/o obj-init Ours w/o role-play Ours w/o both

Involved Objects Number ↑ 185 144 185 146
Self-BLEU ↓ 0.273 0.280 0.276 0.282

Embedding Similarity ↓ 0.143 0.156 0.141 0.159

align the sequence of generated task videos with their corresponding task descrip-
tions, expecting a theoretical accuracy of 0%. Contrary to expectations, Video-
LLaVA-7B reports a false positive rate of 36.3%. To adjust for this anomaly, we
subtract this rate from the model’s raw accuracy for correctly aligned video-task
pairs. This method, while unconventional, provides a more fair and reasonable
evaluation of machine video understanding, underscoring the current challenges
faced by video understanding models in accurately interpreting complex video
content. Results in Table. 3.

Table 4: Results for machine
understanding (generation) on
all 278 task videos and human
understanding, where 25 users
write descriptions for 5 videos.

Machine Human

OpenCLIP ↑ 0.636 0.823

Human Understanding We aim to under-
stand human perception of our generated task
videos by asking participants to provide a one-
sentence description. We then evaluate the align-
ment between these descriptions and the ground
truth task descriptions proposed by VLM, using
OpenCLIP [14]. Table. 4 reveals a high degree of
alignment. Intriguingly, it appears humans under-
stand our hallucinated videos more accurately than machines do. We hypothesize
this discrepancy stems from the limitations of current video understanding mod-
els, whereas humans draw on their prior experiences for a deeper comprehension.

4.5 Task Proposal Ablation Study

We aim to understand if our approach of task proposal, employing role-play and
object-based initialization, yields the most diverse and feasible tasks by modify-
ing the prompt to exclude these techniques. In addition to using Self-BLEU and
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the embedding similarity, we also count the number of objects involved across
all 278 proposed tasks.

The results in Table. 5 indicate that our method yields the most diverse tasks.
Evaluating on all 278 proposed tasks shows a slight rise in Self-BLEU and a de-
crease in embedding similarity compared to the 106 tasks sampled (Table. 1).
This difference arises because more task descriptions lead to repetitive struc-
tures and wording, yet the semantics grow more varied. Excluding object-based
initialization reduces diversity by causing the VLM to overlook certain objects.
Semantic meaning of tasks cannot reflect feasibility. Instead, we show instances
where VLM generates impractical tasks without role-play in Appendix. C. We
find that the impact of removing role-play is more complex, affecting task diver-
sity less (Table. 5) but reducing task feasibility.

5 Discussion

We proposed a framework for zero-shot task hallucination. From the observation
of a single image, our framework is able to discover diverse tasks and hallucinate
task executions as geometric-aware and photo-realistic videos with fine-grained
and consistent object motion. We see our work as a step towards equipping
machines with the profound human capacity, in which humans can recall past
knowledge and anticipate future scenarios through visual perception. Our gener-
ated task videos and planned trajectories could spark exciting applications, such
as letting robots automatically explore and perform tasks in new environments.
Limitations Not all generated task videos achieve the highest quality. We
identified key factors that contribute to the failure cases. Please see Appendix. D.
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See, Imagine, Plan: Discovering and
Hallucinating Tasks from a Single Image

Appendix

A Project Page

All code, data, and additional videos are available at our project page: https:
//dannymcy.github.io/zeroshot_task_hallucination/.

B Additional Details of Method

B.1 Matching-Based Camera 6D Pose Estimation

For single-view 3D reconstruction models which do not provide the 6D pose, Pc =
[Rc | torigin

c ], of the pinhole camera, we develop an efficient method to determine
the pose by comparing object masks with rendered 3D model templates, inspired
from matching-based 6D pose estimation works [9, 34,41,46].

We generate a set of object templates, denoted as {T i
j }J

j=1, each rendered
from the object’s 3D model Oi. These templates are created by positioning the
camera at various locations on an icosphere surrounding the object in SE(3)
space, which simulates a spherical coverage around the object to capture its ge-
ometry from all angles uniformly. For each template T i

j , we compute a matching
score against the occlusion-free object mask Mof

i .
We propose a simple yet effective score matching method. We draw a bound-

ing rectangle around the segmented object inside Mof
i and across all {T i

j }J
j=1,

and crop the bounding rectangle. We then calculate the shape similarity between
the contour line of cropped Mof

i and that of each cropped T i
j using Hu mo-

ments [25]. Additionally, we crop and resize the bounding rectangle to the same
dimension, and evaluate the similarity based on the pixel area of the cropped
and resized masks. Our score matching method can be formulated as:

mA,h
i = Hu(findContour(crop(Mof

i ))), paA
i = sum(resize(crop(Mof

i )))

mB,h
i,j = Hu(findContour(crop(T i

j ))), paB
i,j = sum(resize(crop(T i

j )))

L(Mof
i , T i

j ) = α

∣∣∣∣∣1 −
min(paA

i , paB
i,j)

max(paA
i , paB

i,j)

∣∣∣∣∣ + β
7∑

h=1

∣∣∣∣∣ 1
sgn(mA,h

i ) · log(mA,h
i )

− 1
sgn(mB,h

i,j ) · log(mB,h
i,j )

∣∣∣∣∣
(1)

This dual approach allows for a comprehensive comparison that incorporates
both the geometric configuration and the scale of the object representations.
The best-matched template can be found by arg minJ

j=1 L(Mof
i , T i

j ), and we set
its corresponding camera pose to be the 6D pose of our pinhole camera, denoted
as Pc = [Rc | torigin

c ].

https://dannymcy.github.io/zeroshot_task_hallucination/
https://dannymcy.github.io/zeroshot_task_hallucination/
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(a) With Role-Play (b) Without Role-Play

“The chair is lying on the floor. 
Rotate and translate the chair to 
position it appropriately in front of 
the coffee table.”VLM

“Lift and balance the chair upside 
down on the coffee table.”

VLM

“Rotate the security camera to adjust 
its viewing angle to cover a desired 
area within the room.”

VLM

“Detach the camera from its ceiling 
mount.”

VLM

“Rotate the lampshade to change the 
direction of light emission within 
the constraints of its fixed 
position.”VLM

“Remove the current lampshade and 
install a new one onto the ceiling 
fixture.”

VLM

Fig. 1: Feasibility comparison of the proposed tasks with and without role-play.

The camera now captures the object’s canonical view, centered at the 3D
origin. Subsequently, we adjust the camera’s translation component to focus on
the center of the inpainted background Ibg, resulting in Pc = [Rc | tc], as detailed
in our main paper.

B.2 Sampling Rules for VLM Planning Discrepancies

We define a set of geometric rules for Gaussian sampling around the initially
planned waypoints whenever a collision is detected. In our 3D coordinate system,
positive x-axis [1, 0, 0] points right, positive y-axis [0, 1, 0] is away from viewer,
positive z-axis [0, 0, 1] is up. For translation type 1, we denote the goal pose
relative to the target object’s principle axes as [dx, dy, dz]. For translation type
2, we denote the distance that object 1 moves towards object 2 as dD. The set
of geometric rules are as follows:
if type 1 & [dx, dy, dz] = [0, 0, 0]: sample along [x, y, z] axes
elif type 1 & dx = 0 & dy = 0 & dz != 0: sample along [z] axis, zsampled· dz > 1
elif type 1 & dz = 0: sample along [x, y] axes
elif type 1 & dz != 0: sample along [x, y, z] axes, zsampled· dz > 1
if type 2: sample along the connecting directional vector, Dsampled· dD > 1

B.3 Hand Insertion

Each pose in the final trajectory V q is rendered as a frame in the rendering
engine. To enhance human comprehension and perception, we integrate a 3D
model of “a magic hand” [68] in proximity to the object being manipulated.

C Task Proposal Comparison of Feasibility

We show instances where ChatGPT-4 [47] generates impractical tasks without
role-play in Fig. 1. These unfeasible tasks usually cannot be performed by a
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(b) Inpainting Failure(a) Segmentation Failure (c) Reconstruction Failure

(d) Motion Planning Failure

“Relocate the spoon from its current position to rest inside the mug's opening.”

Fig. 2: Key factors causing failure cases. For each factor, the leftmost image is
the input.

robotic/human hand due to physical limitations or require additional tools be-
yond the capabilities of the hand alone.

D Failure Cases

Not all generated task videos achieve the highest quality. We identify several key
factors that contribute to the failure cases. Fig. 2 shows visualization.

Segmentation Failure When an image contains objects with very similar
appearances, ChatGPT-4 can distinguish them, providing unique short descrip-
tions. For instance, in the input image on the left of Fig. 2(a), ChatGPT-4 dif-
ferentiates two white bowls as “Object 2: bowl of color white with blue
pattern, “Object 3: bowl of color white with black pattern". Nonethe-
less, the language-guided segmentation model, Language Segment-Anything [43],
may fail to capture the nuance, incorrectly merging object masks. This issue
is depicted in Fig. 2(a)’s right reconstructed scene, where Language Segment-
Anything recognizes and merges the two distinct bowls as one.

Inpainting Failure In rare cases, the repainting model LaMa [60] introduces
unintended elements into and distorts object masks, illustrated by the deformed
white bowl in Fig. 2(b)’s right reconstructed scene. Such distortions result in
inaccurately reconstructed 3D models.

3D Model Reconstruction Failure The model One-2-3-45++ [38], despite
its strength, occasionally reconstructs less-than-ideal 3D object models, as illus-
trated by the misshapen lamp shade in Fig. 2(c)’s right reconstructed scene.

Motion Planning Failure ChatGPT-4 occasionally produces suboptimal
planned motions, primarily due to incorrect use of object principal axes and
inaccurate translation measurements. For instance, as shown in Fig. 2(d), one
would expect the spoon to be inserted into the mug. However, ChatGPT-4’s
planning positions the spoon too high, making it appear to float above the mug.
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(a) Original Image (b) Reconstructed Scene

Fig. 3: Example input scene. (a) the original input image, (b) the reconstructed
scene with visualized axes.

E Prompt Details

We show exact prompts and example responses from ChatGPT-4 for the white
plate with coffee grounds shown in the input images of Fig. 3.

Interactive Objects Identification Prompt.
Input:

RGB image (640, 480) = (width, height) with multiple objects.

Your task is to identify and name useful objects (in term of affordances) with precise color and

texture. Exclude background objects. Do not use vague phrase like multi-colored.

Please write in the following format. Do not output anything else:

Object idx (actual integer, start from 0): x of color y

An example response from ChatGPT-4:
“Object 0: sink of color silver

Object 1: faucet of color silver

Object 2: dish soap of color yellow

Object 3: hand soap of color purple

Object 4: sponge of color blue

Object 5: white plate with coffee grounds of color brown”

Task Proposal Prompt.
Input:

1. RGB image (640, 480) = (width, height) with multiple objects.

2. Detected objects with index.

You are a single robot hand working in this image scene to perform simple household tasks. Tasks

must be discovered from the image. Consider objects’ affordances and feel free to make assumptions
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(e.g., a bowl can contain water) and interactions with other objects (e.g., pouring water from

a cup into a bowl).

Task types:

1. Interaction between the manipulating object and one of the detected objects (involve translation,

or translation + rotation).

2. Rotate manipulating object (involve rotation).

Strictly follow constraints:

1. Exclude tasks involving assembly or disassembly of objects.

2. Exclude tasks involving cleaning or functionality testing.

3. Exclude tasks involving imaginary objects.

4. Manipulating object moves; interacting object static.

5. Assume all objects are rigid, without joints or moveable parts (i.e., cannot deform, disassemble,

transform). This applies even to objects that are typically articulated (e.g., laptop).

Propose 3 tasks (2 interaction, 1 rotation) for manipulating Object 5. Write in the following format.

Do not output anything else:

Task Name: xxx

Manipulating obj idx: 5

Interacting obj idx: obj_idx (actual integer, or manipulating obj idx)

Description: basic descriptions.

An example response from ChatGPT-4:
“Task Name: Plate Orientation

Manipulating obj idx: 5

Interacting obj idx: 5

Description: Rotate the plate 180 degrees horizontally to change its orientation while remaining

in the same location on the sink.

Task Name: Plate Relocation

Manipulating obj idx: 5

Interacting obj idx: 0

Description: Move the plate from its current location to the right side of the sink to clear space

for other kitchen activities.

Task Name: Washing Plate

Manipulating obj idx: 5

Interacting obj idx: 1

Description: Position the plate beneath the faucet and simulate the process of rinsing it.”

Image and Spatial Context Understanding Prompt.
Inputs:

1. RGB image (640, 480) = (width, height) with multiple objects and their visualized local axes

(x red, y green, z blue).
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2. Detected objects with index.

3. For each detected object, its 3D center, local xyz-axes, size, and spatial relationship relative

to other objects.

The 3D coordinate system of the image is in centimeters and follows Blender. Positive x-axis [1,

0, 0] right, positive y-axis [0, 1, 0] away from viewer, positive z-axis [0, 0, 1] up. Positive

rotation is counter-clockwise around all axes.

Your task is to learn the spatial context. Also, consider how a robot or human hand might navigate

or interact with these objects, focusing on proximity, accessibility, and collision avoidance.

Do not output.

An example input of object spatial information to ChatGPT-4:

“Obj 0 spatial context:

3D center: [-21.0, 90.0, -14.0] cm

Local x-axis (towards ’right’): [0.9932, -0.0882, -0.0766]

Local y-axis (towards ’back’): [0.1104, 0.9234, 0.3675]

Local z-axis (towards ’up’): [0.0384, -0.3735, 0.9268]

Obj 1 spatial context:

3D center: [-35.0, 85.0, 8.0] cm

Local x-axis (towards ’front_right’): [0.8565, -0.5126, 0.0612]

Local y-axis (towards ’back_right’): [0.5151, 0.8563, -0.0377]

Local z-axis (towards ’up’): [-0.0331, 0.0638, 0.9974]

Obj 2 spatial context:

3D center: [31.0, 80.0, 13.0] cm

Local x-axis (towards ’right’): [0.9971, -0.0062, 0.0756]

Local y-axis (towards ’back’): [0.008, 0.9997, -0.0226]

Local z-axis (towards ’up’): [-0.0754, 0.0231, 0.9969]

Obj 3 spatial context:

3D center: [33.0, 71.0, 8.0] cm

Local x-axis (towards ’right’): [0.8162, -0.0206, 0.5775]

Local y-axis (towards ’back’): [-0.0169, 0.9981, 0.0595]

Local z-axis (towards ’up’): [-0.5776, -0.0583, 0.8142]

Obj 4 spatial context:

3D center: [22.0, 97.0, 3.0] cm

Local x-axis (towards ’right’): [0.999, 0.0383, -0.0231]

Local y-axis (towards ’back’): [-0.0399, 0.9966, -0.0721]

Local z-axis (towards ’up’): [0.0203, 0.073, 0.9971]

Obj 5 spatial context:

3D center: [-12.0, 78.0, -13.0] cm

Local x-axis (towards ’right’): [0.9998, -0.0216, -0.001]

Local y-axis (towards ’back’): [0.0216, 0.9998, 0.0052]

Local z-axis (towards ’up’): [0.0009, -0.0052, 1.0]

Obj 0 size: 47.63 cm x 39.15 cm x 22.25 cm (WxDxH)
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Obj 1 size: 19.11 cm x 13.82 cm x 17.83 cm (WxDxH)

Obj 2 size: 9.69 cm x 9.19 cm x 15.63 cm (WxDxH)

Obj 3 size: 7.74 cm x 6.91 cm x 13.97 cm (WxDxH)

Obj 4 size: 9.57 cm x 2.17 cm x 5.35 cm (WxDxH)

Obj 5 size: 12.17 cm x 11.90 cm x 7.03 cm (WxDxH)

Obj 0 - Closest per direction: up: Obj 1 (26.75 cm); right: Obj 4 (46.28 cm); front_right: Obj

5 (14.55 cm)

Obj 1 - Closest per direction: down: Obj 0 (26.75 cm); right: Obj 5 (31.93 cm)

Obj 2 - Closest per direction: left: Obj 5 (50.92 cm); front: Obj 3 (11.06 cm); back_left: Obj

4 (21.93 cm)

Obj 3 - Closest per direction: left: Obj 5 (49.76 cm); back: Obj 2 (11.06 cm)

Obj 4 - Closest per direction: left: Obj 0 (46.28 cm); front_right: Obj 2 (21.93 cm); front: Obj

3 (28.77 cm); front_left: Obj 5 (41.97 cm)

Obj 5 - Closest per direction: back_left: Obj 0 (14.55 cm); left: Obj 1 (31.93 cm); right: Obj

3 (49.76 cm); back_right: Obj 4 (41.97 cm)”

Motion Planning Prompt.

Inputs:

1. RGB image (640, 480) = (width, height) with multiple objects and their visualized local axes

(x red, y green, z blue).

2. Detected objects with index.

3. Simple household tasks and descriptions to be performed by a single robot hand.

Your goal is to plan fine-grained motions for the manipulating object to complete the tasks using

four manipulations, explained as follows:

Rotation:

rotate_self: Axial rotation. The object rotates around its local [x/y/z] axis by [degrees].

rotate_wref: Rotation relative to the target object:

- pitch: Tilt similar to pouring water, around a horizontal axis formed by the cross product of

the connecting directional vector and the target’s z-axis.

- yaw: Horizontal rotation, like a camera panning, around a vertical axis formed by the cross product

of the connecting directional vector and the pitch axis.

- roll: Rotation like a drill entering a surface, around the connecting directional vector.

The degrees can be specified in two ways:

- Exact [degrees]. Positive values rotate the manipulating object towards the target object.

- Fixed_towards/fixed_back. ’fixed_towards’ orients the object towards the target, mimicking actions

like pouring (pitch), facing (yaw), or drilling into (yaw+roll) the target. ’fixed_back’ reverses

this alignment.

Translation:

translate_tar_obj: Defines the goal relative to the target object’s local axes, with translation

values for its [local_x, local_y, local_z] axes in centimeters. [0, 0, 0] cm indicates the goal

is the center of the target object.
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translate_direc_axis: Sets the goal relative to a directional vector between two reference objects,

specifying how far (in cm) object 1 should move towards or away from object 2 along this vector

(positive closer, negative away). Object indices must differ, and if one reference object is the

manipulating object, its current location is used.

Strictly follow caveats:

1. Apply rotate_wref thoughtfully and sequentially around different axes as needed.

2. Use the provided spatial information and image effectively for understanding and planning within

the 3D scene.

3. Combine common physical understanding with the scene’s spatial details (like relative positions

and sizes of objects) for strategic planning.

4. Remember that objects’ local axes’ positive directions might require using negative values in

rotation and translation for authentic motion planning.

Plan as below. Fill in obj_idx based on the tasks.

rotate_self: Rotate Manipulating Object [obj_idx] around its local axis [x/y/z] by [degrees].

rotate_wref: Rotate Manipulating Object [obj_idx] relative to Target Object [target_obj_idx] around

[pitch/yaw/roll] axis by [degrees/fixed_towards/fixed_back].

translate_tar_obj: Move Manipulating Object [obj_idx] to [a, b, c] cm relative to Target Object

[target_obj_idx]’s local [x, y, z] axes.

translate_direc_axis: Move Manipulating Object [obj_idx] [a] cm along the directional vector from

Reference Object [ref_obj_1_idx] to Reference Object [ref_obj_2_idx].

Here are some full examples. Please write in the following format. Do not output anything else:

Task Category: Bear rotation

Description: Rotate the toy bear 90 degrees on its vertical axis.

Motion Planning:

Manipulating obj idx: bear_idx (actual integer)

Interacting obj idx: bear_idx (actual integer)

1. rotate_self: Rotate Manipulating Object [bear_idx] around its local axis [z] by [90] degrees.

Task Name: Cup content transfer

Description: Pick up the mug and pour its contents into the bowl.

Motion Planning:

Manipulating obj idx: cup_idx (actual integer)

Interacting obj idx: bowl_idx (actual integer)

1. translate_tar_obj: Move Manipulating Object [cup_idx] to [5, -7, 5] cm relative to Target Object

[bowl_idx]’s local [x, y, z] axes.

2. rotate_wref: Rotate Manipulating Object [obj_idx] relative to Target Object [bowl_obj_idx] around

[pitch] axis by [fixed_towards].

Task Name: Screwdriver penetration

Description: Use a screwdriver to penetrate an avocado.

Motion Planning:

Manipulating obj idx: screw_idx (actual integer)
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Interacting obj idx: avocado_idx (actual integer)

1. translate_tar_obj: Move Manipulating Object [screw_idx] to [-5, -5, 0] cm relative to Target

Object [avocado_idx]’s local [x, y, z] axes.

2. rotate_wref: Rotate Manipulating Object [screw_idx] relative to Target Object [avocado_idx]

around [yaw] axis by [fixed_towards].

3. rotate_wref: Rotate Manipulating Object [screw_idx] relative to Target Object [avocado_idx]

around [roll] axis by [360] degrees.

An example response from ChatGPT-4:
“Task Name: Plate Orientation

Description: Rotate the plate 180 degrees horizontally to change its orientation while remaining

in the same location on the countertop.

Motion Planning:

Manipulating obj idx: 5

Interacting obj idx: 5

1. rotate_self: Rotate Manipulating Object 5 around its local axis [z] by [180] degrees.

Task Name: Plate Relocation

Description: Move the plate from its current location to the right side of the sink to clear space

for other kitchen activities.

Motion Planning:

Manipulating obj idx: 5

Interacting obj idx: 0

1. translate_tar_obj: Move Manipulating Object 5 to [26.5, 0, 0] cm relative to Target Object 0’s

local [x, y, z] axes.

Task Name: Washing Plate

Description: Position the plate beneath the faucet and simulate the process of rinsing it.

Motion Planning:

Manipulating obj idx: 5

Interacting obj idx: 1

1. translate_tar_obj: Move Manipulating Object 5 to [6.5, 0, -5] cm relative to Target Object 1’s

local [x, y, z] axes.

2. rotate_self: Rotate Manipulating Object 5 around its local axis [x] by [-15] degrees.

3. rotate_self: Rotate Manipulating Object 5 around its local axis [y] by [-15] degrees.

4. rotate_self: Rotate Manipulating Object 5 around its local axis [y] by [10] degrees.

5. rotate_self: Rotate Manipulating Object 5 around its local axis [x] by [10] degrees.”
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